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Abstract—Exploration is a critical function for autonomous
mobile robots. Traditionally, the entire map has to be processed
to extract frontiers and perform path planning. However, as the
robot explores the environment, the map grows over time, and
increasing computational resources are required, especially for
large-scale environments. Moreover, only a few methods focus
on the exploration on point cloud maps. Here, I present a
new practical method to autonomous mobile robot exploration
based on a sparse, relatively small-size point cloud local map,
which combines Rapidly-exploring Random Tree (RRT) and
dynamic window approach (DWA) algorithm together. The local
map is built from the consecutive inputs of raw point clouds
using an inexpensive 3D sensor, i.e. Kinect V2. Frontiers are
effectively detected and local path planning is performed by RRT
algorithm directly on unordered point cloud local maps. Motion
planning is performed online by DWA to avoid obstacles and
direct a nonholonomic mobile robot towards frontiers separating
known environments from unknown environments. Embedded
with simultaneous localization and mapping (SLAM) system of
my previous research, the performance of the proposed method
is evaluated in a large-scale customized virtual environment with
a size of 33×29×6m using Gazebo as the robotic simulator. The
results suggest that the proposed algorithm can accurately direct
the nonholonomic mobile robot to unexplored environments in
real time. Also, it successfully helps build a coherent semi-
metric topological map. The proposed algorithm shows great
efficient performance and is suitable for both static and dynamic
environments. Combination of RRT and DWA algorithm on point
clouds, as a general approach, can be extended to generic 3D
nonplanar physical environments. Videos of the experiments can
be found at https://youtu.be/0i766fhs9Ds.

Index Terms—Mobile Robots, Autonomous Exploration, Point
Clouds, Motion Planning, Rapidly-exploring Random Tree, Dy-
namic Window Approach

I. INTRODUCTION

Mobile robot exploration is essential for autonomous mobile
robots safely and efficiently operating in many challeng-
ing application scenarios, such as transportation, inspection,
surveillance, and search and rescue. The main goal of mobile
robot exploration is to answer the question of choosing where
a robot should go next, and select appropriate control actions
to reach the next desired position. It leads to increase the
knowledge of the robot by visiting unknown or uncertain
environments [1].

Fig. 1. An instant at the beginning of the simulation experiment. The top
left image depicts the robot, i.e. Pioneer 3-AT, at the gate. The top right
shows what the robot sees. The bottom left image is the top-down shot of
the simulation environment. Point clouds are presented on the bottom right
corner, when the robot sees the environment through Kinect V2.

Although many works have been proposed to solve the
indoor exploration problem using laser scanner and deal with
navigation problem on point cloud maps, only a few methods
focus on the exploration on point cloud maps. An online com-
puted random tree is applied to find the best branch and make
micro aerial vehicle (MAV) follow the first edge of this branch
to explore unmapped space for 3D environments [2]. A point
cloud map of environment is built from stereo cameras on the
MAV. The algorithm is tested in two simulation scenarios, the
apartment setup and the bridge model. It is also evaluated in
a closed room with a size of 9× 7× 2m. However, the online
random tree still needs to search the whole 3D occupancy map.
As the map grows, the MAV with limited resources will be
unaffordable. Also, it is only evaluated in a closed room in
the physical environment.

In this work, I present a new practical method to au-
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tonomous mobile robot exploration on a sparse, relatively
small-size point cloud map. The input of raw point clouds is
provided by an inexpensive 3D sensor, i.e. Kinect V2. The raw
point clouds are filtered to a sparse one. Then it is concatenated
with the previous local map. After cropped to limited size, the
output point cloud is the current local map. The RRT algorithm
directly searches on the unordered point cloud local map to
detect the frontier points and traversible paths. The mean-shift
algorithm [3] is applied to cluster the frontier points without
assigning the number of clusters, which largely discards many
frontier points which are close to each other. Motion planning
is performed by DWA method [4] to online avoid obstacles and
control a nonholonomic mobile robot to the desired frontier
point, which separates known environments from unknown
environments. The proposed method is implemented in C++
based on ROS framework. Embed with my previous SLAM
system [5], the performance is evaluated in a large-scale
customized virtual environment with a size of 33 × 29 × 6m
(See Fig. 1), which uses Gazebo as the robotic simulator.
The experimental results suggest that, in each local point
cloud map, the proposed method can accurately direct the
nonholonomic robot to unknown environments in real time.
Moreover, it successfully helps build a coherent semi-metric
topological map.

In summary, this paper makes the following contributions:
• Frontiers are detected by RRT algorithm on a local

point cloud map in 3D environments. Since the local
map always keeps similar size, computational complexity
would not increase in this local exploration process, as
the exploration time goes.

• The proposed method helps build a semi-metric topolog-
ical map in a large-scale customized virtual environment
with a size of 33× 29× 6m using Gazebo as the robotic
simulator.

• Combination algorithm of RRT and DWA on point clouds
is proposed, which can be considered as a general ap-
proach to deal with local planning problems.

• An inexpensive 3D sensor, i.e. Kinect V2, and the car-
like nonholonomic robot, i.e. Pioneer 3-AT are chosen
in the system for future practical applications, in which
a limited range and limited field of view range are
considered.

• The point cloud registration is implemented by using
robot odometry at close range, not by iterative closest
point (ICP) [6], which largely improves the performance.

The remainder of this paper is organized as follows: Sec-
tion III presents the proposed algorithm in detail. The robotic
implementation is described in Section IV. Evaluation in sim-
ulation experiment is described in the Section V. Section VI
summarizes and concludes the presented work.

II. RELATED WORK

Many algorithms are proposed to solve the exploration prob-
lem. Topological methods construct the explored environment
as a connectivity graph [7], [8]. It can identify which distinc-
tive place is reached and recognize the explored environments

through graph vertices. Potential methods can also be adapted
for exploration by gradient descent in a continuous vector field
with appropriate boundary conditions [9]. Another method is
to use random search techniques to sample space and extend
edges in tree-like connectivity. The Sensor-based Random Tree
is a typical example [10], [11], which is a variant of Rapidly-
exploring Random Tree [12]. Frontier-based exploration is the
most common method for mobile robot exploration [13]–[15].
The idea is to move to the boundary between explored and
unexplored environments, where the robot can use sensors
to perceive more information and expand the knowledge of
workspace. The RRT algorithm can also be employed to
detect the frontier points on the 2D occupancy grid map,
which is generated from laser scanner [16]. After finding
the desired frontier point, ready-make ROS packages, the
gmapping package [17] and the ROS navigation stack [18], are
applied to perform mapping and path planning, respectively. It
is only limited to 2D exploration, and the whole 2D occupancy
grid map is needed to processed to detect frontiers. As the
map grows, it will consume more and more computational
resources [19].

Point cloud is a canonical 3D representation. Point cloud
can be recorded from LiDAR, depth sensor, and converted
from stereo cameras. Other 3D representations can also be
converted to point cloud, such as the representation of mesh,
volumetric, and depth map [20]. Also, point cloud is close
to raw sensor data, and point cloud is a more compact 3D
representation than voxel. Many researchers focus on the path
planning problem given a 3D point cloud map. The 3-D
tensor voting framework is used to solve the 2.5-D navigation
problem using raw point cloud as input for mobile robots [21].
A practical approach is presented in [22] to perform global
motion planning and terrain assessment on point cloud maps
for mobile robots in generic 3D environments. The trajectories
are directly computed on unordered point cloud maps using
RRT algorithm. After trajectory optimization, the robot is
navigated to the goal by following the planned path.

III. PROPOSED APPROACH

The exploration strategy in local maps can be split into four
modules: the local mapping module, the RRT-based frontier
detection module, the frontier filter module, and DWA-based
motion planning module. The overall schematic diagram of
the exploration strategy is shown in Fig. 2. Kinect V2 serves
as eyes of the robot to see the environment. The point cloud is
provided to construct a local point cloud map. Then frontiers
are detected by the RRT algorithm and filtered by the frontier
filter module. Finally, the DWA-based motion planning module
sends the action command to the robot, which continuously
controls the robot in the environment.

A. Local Mapping

The local mapping module only maps the nearby environ-
ment of the robot. The local mapping process is shown in
Fig. 3. The raw point cloud is recorded from Kinect V2.
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Fig. 2. Overall schematic diagram of the mobile robot exploration algorithm.
The robot sees the environment through a 3D sensor by the representation of
point clouds. Local map is built from consecutive inputs of point clouds. The
RRT algorithm is performed on the local point cloud map to detect frontiers.
The frontier points are clustered and assigned as the next designed point. The
DWA-based motion planning directs the robot following the traversible path
towards the unknown environments.

To ensure the computational perform, point clouds are down-
sampled to sparse point clouds. According to the odometry
information, the movement of the robot from the previous time
step to the current time step can be calculated, which is used
to transform the coordinate of the previous local map to the
current coordinate of the robot. Then the downsampled point
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Fig. 3. The local map building process. The raw point cloud is downsampled.
According to odometry information, coordinates of the previous cropped point
clouds, namely previous local point cloud map, are transformed. Then the
current downsampled point clouds are merged with the previous transformed
local map. Finally the merged point clouds are cropped and output as the
current local map.

cloud is merged with the previous transformed local map. To
limit the size of the local map, the merged point clouds are
cropped from three different dimensions at each iteration. It
only keeps the familiar high of the robot. Finally, the cropped
point clouds output as the current local map.

B. RRT-based Frontier Detection

The RRT-based frontier detection aims at finding the frontier
points and traversible paths on the local point cloud map.
To ensure the requirement of computational resources, the
RRT algorithm only searches on the local point cloud map. In
order to improve the performance, a variant of RRT, namely
RRT* [23], is actually employed in the work. For simplicity,
only the RRT-based frontier detection algorithm is shown in
Algorithm 1.

The RRT-based frontier detection algorithm starts from a
single initial vertex V = xinit, where the initial point is the
origin point. The edge is set to empty E = φ. For each loop, a
random point xrand is generated from a defined range. Here,
the sample range is a rectangular area in the robot. Then, the
nearest point xnearest is found from the current tree. A new
point is generated by Steer function according to a predefined
step length from xnearest and xrand. The ObstacleFreeCheck
function checks whether there are obstacles between xnearest
and xnew. Afterwards the PointCloudCheck function checks
whether xnew is close to the local point cloud map. After fixed
iterations, a random tree is generated on the local point cloud
map.

Algorithm 1: RRT-based Frontier Detection Algorithm

1 V ← xinit;E ← φ
2 for i = 1,...,n do
3 xrand ← SampleFree;
4 xnearest ← Nearest(G = (V,E), xrand);
5 xnew ← Steer(xnearest, xrand);
6 if ObstacleFreeCheck(map, xnearest, xnew) then
7 if PointCloudCheck(map, xnew) then
8 V ← V ∪ xnew;E ← E ∪ (xnearest, xnew)
9 end

10 end
11 end

C. Frontier Filter

As the random search algorithm will generate too many
frontier points which are extremely close to each other, it needs
to discard the redundant frontier points and find the appropriate
frontier points. The frontier filter receives the detected frontier
points from the RRT-based frontier detection module. Firstly,
the frontier points are clustered by mean-shift algorithm with-
out assigning the number of clusters. The desired frontier
point, which is nearest to the center of each cluster, is selected.
The other frontier points are removed. Sometimes, on the
intersection of roads, multiple desired frontier points can be
found. The coordinates of the frontier points relative to the
position of the robot would be as selection criteria, as the
coordinates provide the orientation information of the frontier
points. During the high-level decision making process, the
preferred conditions would determine which frontier points
would be chosen.



The mean-shift algorithm is detailed described in the fol-
lowing. The frontier points xi, i = 1, ..., n on a 2-dimensional
space R2. The kernel density estimate can be defined as
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1
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with window radius h, and kernel K(x). The kernel K(x) =
ck,dk(‖x‖2), and ck,d assures K(x) integrates to 1. When the
gradient function ∇f(x) = 0, the mean shift item can be
found
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For each iteration, the mean shift vector mh(x
t) is computed.

Then the points are updated by

xt+1 = xt + mh(x
t). (3)

The gradient makes the mean shift vector points toward the di-
rection of maximum increase in the density, until convergence
to a point.

D. DWA-based Motion Planning

The dynamic window approach is a velocity-based local
planner [4]. As the dynamic window approach is derived from
the dynamics of the robot, it directly calculates the optimal
collision-free velocity for a robot to reach the goal. It translates
a frontier point into a series of velocity (v, w) commands for
a mobile robot. The DWA-based motion planning algorithm
is presented in algorithm 2. Three basic information is given,
namely robot pose, the frontier point, and the robot kinematic.
In this work, the robot is on the origin. The robot kinematic
sets the max translational and rotational velocities, acceler-
ations of translation and rotation, resolutions of translational
and rotational velocities. The dynamic step time and predicted
duration serve as the parameters of the dynamic window. The
point cloud is provided by the local mapping module.

The main goals of DWA-based motion planning algorithm
are to calculate a valid velocity search space, and then select
the optimal velocity command for the mobile robot. The
allowable velocity is calculated from the robot pose and
robot kinematic, which also ensures the robot continuously
travels in the environment. The set of velocities generate safe
trajectories, which allow the robot to stop before collision.
The set of velocities can be achieved in the next time slice
given the dynamics of the robot, namely dynamic window.
The optimal velocity is chosen to maximize the function of
the velocity, the heading closest to the goal, and the overlap
between the straight line to the goal and possible trajectories
(See algorithm 2).

IV. ROBOTIC IMPLEMENTATION

The proposed mobile robot exploration on point clouds
algorithm is implemented in the C++ language and is run in
the Robot Operating System (ROS) Indigo on Ubuntu 14.04
LTS (Trusty). The SLAM system of my previous work in [5]

Algorithm 2: DWA-based Motion Planning Algorithm

1 Given robotPose, frontierPoint, robotKinematic
2 pointcloud = readPointcloud()
3 allowable v = generateWindow(robotPoseV, robotKinematic)
4 allowable w = generateWindow(robotPoseW, robotKinematic)
5 for each v in allowable v do
6 for each w in allowable w do
7 breakDist = calculateBreakingDistance(v)
8 dist = find dist(v,w,pointcloud,robotKinematic)
9 if dist ≥ breakDist then

10 heading = calcHeadingEval(v,w,frontierPoint)
11 path = calcStraightLineEval(v,w,frontierPoint)
12 clearance = (dist-breakDist)/(dmax - breakDist)
13 cost = costFunction(clearance,heading,v,w,path)
14 if cost ≥ optimal then
15 best v = v
16 best w = w
17 optimal = cost
18 end
19 end
20 end
21 end

is embedded in the implemented system. The SLAM system
receives images and odometry as the input, and builds a
semi-metric topological map, also called cognitive map, when
the proposed exploration algorithm consecutively sends a set
of action commands to control the robot operation in the
environment.

In the mobile robot exploration algorithm, the local mapping
module receives point cloud messages directly from Kinect
V2 mounted on the robot, which is separately implemented
as a ROS node. The local mapping module outputs the local
point cloud map as a ROS message. The RRT-based frontier
detection module and the frontier filter module are together
implemented in a separate ROS node. It receives the local
point cloud map, and searches frontier points on the local
point cloud map, then filters to find the desired frontier
point with preferred conditions. The desired frontier point
can be autonomously selected according to threshold of the
distance and the rotation angle for each intersection, or just at
random. Here, for this robotic implementation, the preferred
conditions, like left or right, are sent manually during the
simulation process, which would lead the algorithm to find
the optimal frontier point. Therefore, the system is actually
a semi-autonomous exploration robotic system. The DWA-
based motion planning module is implemented as another ROS
node, which receives the next desired frontier point and local
point cloud map as the inputs. Derived from the mobile robot
kinematics, it directly sends the optimal velocity command to
the robot.
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Fig. 4. Screenshots of mobile robot exploration algorithm. (A) The position of the robot is in front of the gate. (B) The mobile robot exploration algorithm
with a smaller random step is shown in rviz provided by ROS. The point cloud shows the local map. The blue line is generated by RRT-based frontier
detection algorithm. The green points are frontiers after mean-shift algorithm filtering. The red line is the selected traversible path according to the desired
frontier point. The little green points in front of the robot are trajectories generated by DWA-based motion planning algorithm. The yellow one is generated
the optimal velocity. (C) The image is seen by the robot. (D) The mobile robot exploration algorithm with a larger random step is shown in rviz.

V. SIMULATION BASED EVALUATION

In order to systematically evaluate the performance of
the proposed mobile robot exploration algorithm, simulation
experiments are performed. The proposed mobile robot ex-
ploration algorithm using an inexpensive 3D sensor could
freely guide the online robot exploration in the simulation
environment with a size of 33×29×6m, and successfully build
a coherent topological map (see videos of the experiments at
https://youtu.be/0i766fhs9Ds).

A. Simulation Setup

As the proposed mobile robot exploration algorithm works
in a closed loop with the robot’s perception, local mapping,
local path planning, and motion control, a detailed and realistic
simulation is needed. The Gazebo simulation environment is
used along with a nonholonomic robot, i.e. Pioneer 3-AT.
The nonholonomic robot is car-like robots, which is more
significant for practical applications. Kinect V2 is chosen as
a 3D sensor to see the environment, as the price is much
cheaper than another 3D sensor, like LiDAR. It also leads to
consider the limited range and limited field of view range of
the sensor during the operation process of the robot. Kinect
V2 can also provide visual information. The proposed mobile
robot exploration algorithm together with my previous SLAM
work is evaluated on a personal computer with 3.4 GHz six-
core Intel i7 processor and 64 GB memory.

The simulation scenario refers to a 33×29×6m outdoor en-
vironment. The customized environment simulated in Gazebo
is a typical park scenario, which includes the zoo gate, trees
with different color, size and shape, ticket office, fountain,
walls, paths, etc. The whole environment is closed by walls,
which attaches different animal images, like tiger, lion, cat,
rhinoceros, etc. Hence, the environment is called ”The Zoo”.

B. Simulation Results

I evaluated the proposed mobile robot exploration algorithm
in the simulation environment, i.e. The Zoo. The mobile robot
performs motion planning on the local point cloud map. A set
of motion command is sent to the motion control module to
make the mobile robot explore the simulation environment
towards the unknown space.

Fig. 4 visually shows how the proposed mobile robot
exploration algorithm works during the simulation process.
The robot stands in front of the gate shown in Fig. 4A.
What the robot sees is shown in Fig. 4C. The mobile robot
exploration algorithm with a smaller random step is presented
in rviz, shown in Fig. 4B. The traversible paths are generated
by RRT-based frontier detection algorithm, shown in blue
lines. The paths avoid the obstacles, and are just on the local
point cloud map explored area. The random step is set to
0.2m. The total iterations for the RRT-based frontier detection
are 300. After clustering the frontier points by the mean-

https://youtu.be/0i766fhs9Ds
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Fig. 5. An overhead view of the simulation environment and the semi-metric topological map. (A) The evaluation environment is a 33× 29× 6m outdoor
environment. The white part is the runnable path. Other colors show the buildings, trees, walls, gardens, etc. (B) The semi-metric topological map. The green
thick line comprises topological graph vertices, and the blue thin line consists of links between connected vertices.
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Fig. 6. Topological map evolution for the simulation environment visualized
with ROS rviz. The odometry is poor due to the accumulated error and
regularly leads to localization errors which are corrected by loop closures.

shift algorithm, the frontier points are green points on the
edge of the local point cloud map. The preferred conditions
are given manually, which guides the robot to choose which
frontier point at each intersection. According to the desired
frontier point, the selected path is shown by the red line. DWA-
based motion planning algorithm generates the achievable
trajectories displayed by little green points. The yellow line
presents the optimal velocity trajectory. After all this process,
the robot receives movement commands towards the desired
frontier points. While, in the practical application, a small
random step would consume more computational resources,
a larger step usually is chosen. In Fig. 4D, the random step
size of the RRT-based frontier detection is set to 1.0m.

Fig. 6 shows the evolution of the topological map for
the simulation environment, for intervals of one-sixth of the
simulation, ending in the final map shown in Fig. 6F. The
topological map is displayed by red lines within ROS rviz.
Since the odometry is poor due to the accumulated error, it
regularly leads to localization errors which are corrected by
loop closures. Fig. 6A shows the mobile robot in the beginning
position. The mobile robot is located in the intersections shown
in Fig. 6B and D, which can find multiple runnable paths
on the local point cloud maps using the proposed algorithm.
However, the mobile robot can find only one runnable way
when it runs in the long and narrow lane shown in Fig. 6C
and E.

Together with my previous SLAM work, the semi-metric
topological map is created shown in Fig. 5B. The green
thick line comprises by topological vertices, and vertices are
connected by the blue thin line. As the physical distance is
considered, the map is actually a semi-metric topological map.



The performance of the proposed algorithm can be visually
compared with the overhead view of the ground truth map
(Fig. 5A) by naked eyes. The overall layout of the road
network of the simulation environment is captured by the
semi-metric topological map. The semi-metric topological map
correctly represents all loop closures, curves, and intersections.
As the odometry is with uncertainty, the map is slightly
different with the ground truth map. In summary, the semi-
metric topological map is consistent with the ground truth map
of the simulation environment.

VI. SUMMARY & CONCLUSION

Within this work, a mobile robot exploration algorithm is
proposed that is capable of exploring a previously unknown
environment, only directly on a sparse, relatively small-size
point cloud local map. Since the proposed method performs
RRT-based frontier detection only on the local map, the
requirement of computational resources would not increase
as the map expands over time. A semi-metric topological
map is successfully constructed of the explored environment,
which is a customized virtual environment. Compared with
the ground truth environment, the map captures the overall
layout of the road in the simulation environment. The mobile
robot exploration algorithm online computes good exploration
paths, finds the desired frontier point, and helps the robot
avoid obstacles, finally towards to the unknown environment.
The nonholonomic robot and an inexpensive 3D sensor are
used for more practical application in the future. Furthermore,
considering the real-time performance of the proposed mobile
robot exploration algorithm, it is suitable for both static and
dynamic environments, and also, as a general method, it can
be extended for generic 3D nonplanar physical environments.

In the future, the proposed algorithm will be considered as
a basis to further develop autonomous mobile robots system.
The proposed mobile robot exploration algorithm can help the
mobile robot find possible runnable paths and safely travel in
the dynamic environments based on the local point cloud map,
even when the mobile robot gets lost in the global localization.
Also, it can be used as the underlying algorithm to ensure
the normal operation of the mobile robot, and receives high-
level commands, such as take the left side, or go straight, like
humans. Together with the cognitive map, it is very likely to
develop fully autonomous exploration and navigation system
at low computational cost and complexity.
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